OpenYear of origin: 1987
Posted online: 2018-10-23 19:53:11Z by Henrik Shahgholian1051
Cite as: P-181023.1
Abelian Sandpile Model (ASM) is a lattice growth model for configurations of chips distributed on vertices of $\mathbb Z^d$. A vertex carrying at least $2d$ chips topples giving a single chip to all its $2d$ lattice neighbours, and losing $2d$ chips itself. If there are no sites with more than $2d-1$ chips, the process terminates. For any finite non-negative initial configuration of chips, subsequently toppling all sites with at least $2d$ chips, the process terminates in finite steps. This process is abelian in the sense that the final configuration of chips is independent of the order of toppling. The model originates in the work of Bak-Tang-Wiesenfeld [2].
As the number of particles tend to infinity the ASM has a uniques scaling limit which tends to a free boundary problems with facets. See [3].
Problem: Is the scaling limit of ASM convex?
In [1] the authors prove that in certain directions ASM is convex, and that the boundary of ASM is Lipschitz graph locally. It seems that a complete convexity proof has to use further properties of the model, either in its combinatorial setting or the scaling limit setting in terms of viscosity solutions to certain free boundary problems.
No solutions added yet
Edited: (general update ) at 2018-10-24 14:02:39Z
Edited: (general update ) at 2018-10-24 07:32:31Z View this version
Created at: 2018-10-23 19:53:11Z View this version
No remarks yet