Boundary layers in periodic homogenization of Dirichlet problem

Partially SolvedYear of origin: 1978

Posted online: 2018-07-07 19:13:48Z by Hayk Aleksanyan151

Cite as: P-180707.1

  • Analysis of PDEs
View pdf

Problem's Description

Consider the homogenization problem of the elliptic system \begin{equation} - \nabla \cdot A \left( \frac{x}{\varepsilon} \right) \nabla u (x) = 0, \ \ x \in D, \tag{1} \end{equation} in a domain $D\subset \mathbb{R}^d$, ($d\geq 2$), and with oscillating Dirichlet boundary data \begin{equation} u(x) = g \left(x , \frac{x}{\varepsilon} \right), \ \ x \in \partial D. \tag{2} \end{equation}

Here $\varepsilon> 0$ is a small parameter, and $A= A^{\alpha \beta } (x) \in M_N(\mathbb{R})$, $x\in \mathbb{R}^d$ is a family of functions indexed by $1\leq \alpha, \beta \leq d$ and with values in the set of matrices $M_N( \mathbb{R})$. For each $\varepsilon>0$ let $\mathcal{L}_\varepsilon$ be the differential operator in question, i.e. the $i$-th component of its action on a vector function $u=(u_1,...,u_N)$ is defined as $$ (\mathcal{L}_\varepsilon u)_i (x)= - \left( \nabla \cdot A \left( \frac{\cdot}{\varepsilon} \right) \nabla u \right)_{i} (x) = -\partial_{x_\alpha} \left[ A^{\alpha \beta }_{ij} \left( \frac{\cdot}{\varepsilon} \right) \partial_{x_\beta} u_j \right], $$ where $1\leq i \leq N$ (the case $N=1$ corresponds to scalar equations). We impose the following conditions on the problem $(1)$-$(2)$:


(Ellipticity) there exists a constant $\lambda>0$ such that for any $x\in \mathbb{R}^d$, and any $\xi=(\xi^\alpha_i)\in \mathbb{R}^{dN}$ one has $$ \lambda \xi^\alpha_i \xi^\alpha_i \leq A^{\alpha \beta}_{ij}(x) \xi^\alpha_i \xi^\beta_j \leq \frac{1}{\lambda} \xi^\alpha_i \xi^\alpha_i. $$

(Periodicity) $A$ and, $g$ in its second variable, are both $\mathbb{Z}^d$-periodic, i.e. $A(y+h) = A(y)$, and $g(x, y + h) = g(y)$ for all $x\in \partial D$, $y\in \mathbb{R}^d$, and $h\in \mathbb{Z}^d$.

We skip further assumptions on the smoothness and geometry of the domain, these are not relevant for introducing the general problem.

For each $\varepsilon > 0$ let $u_\varepsilon$ be the unique solution to $(1)$-$(2)$.

The main question, in general terms, asks: $$ \textbf{What can we say about the limit of } u_\varepsilon \textbf{ as } \varepsilon \to 0 \ ? $$ In other words does $(1)$-$(2)$ have a homogenized limit and if so what properties does it have?

Following is a brief discussion based on [1] (see also [2]-[4] for details) on how one may naturally appear at $(1)$-$(2)$.

Consider problem $(1)$ but with a fixed boundary data $g$, i.e. $$ -\nabla \cdot A\left( \frac{x}{\varepsilon} \right) \nabla u (x) = 0 , \ x\in D \qquad \text{and} \qquad u= g(x), \ x\in \partial D. $$ By Lax-Milgram for each $\varepsilon>0$ this problem has a unique weak solution $u_\varepsilon \in H^1(D; \mathbb{R}^N)$, which converges weakly in $H^1(D)$ to solution $u_0$ of the homogenized problem $$ -\nabla \cdot A^0 \nabla u_0 (x) = 0 , \ x\in D \qquad \text{ and } \qquad u_0= g(x), \ x\in \partial D. $$ Here $A^0$ is the homogenized coefficient tensor and is defined via the solutions of the cell-problem, namely for $1\leq \gamma \leq d$ define $\chi = \chi^\gamma (y) \in M_N(\mathbb{R})$ to be the periodic solution of the problem $$ -\partial_\alpha [ A^{\alpha \beta}(y) \partial_\beta \chi^\gamma(y) ] = \partial_\alpha A^{\alpha \gamma } (y) \text{ in } \mathbb{T}^d \text{ and } \int_{\mathbb{T}^d} \chi^\gamma(y) dy = 0 , $$ where $\mathbb{T}^d$ is the unit torus, and we adopted the summation convention of repeated indices. The homogenized coefficients are defined by $$ A^{0, \alpha \beta} = \int_{ \mathbb{T}^d } A^{\alpha \beta} dy + \int_{\mathbb{T}^d} A^{\alpha \gamma} \partial_{\gamma } \chi^{\beta} dy. $$

Setting $u_1 (x,y) = - \chi^{\alpha} (y) \partial_{\alpha} u_0(x)$ one obtains $$ u_\varepsilon(x) = u_0(x) + \varepsilon u_1 \left( x, \frac{x}{\varepsilon} \right) + O( \varepsilon^{1/2} ) \text{ in } H^1(D). $$ The latter is the justification that the first two terms of the formal two-scale expansion of $u_\varepsilon$ are correct. Now observe that there is a mismatch of the boundary data in the left and right hand sides of the last expansion. The profile $u_1$ being periodic in its second variable oscillates near the boundary, giving rise to the so-called boundary layer phenomenon, which is responsible for the $\varepsilon^{1/2}$ loss in the approximation of $u_\varepsilon$. Quoting [1],


Of particular importance is the analysis of the behavior of solutions near boundaries and, possibly, any associated boundary layers. Relatively little seems to be known about this problem.


Indeed, correcting the boundary data by $u_{1,\varepsilon }^{bl}$ defined as $$ \mathcal{L}_\varepsilon u_{1, \varepsilon }^{bl} = 0 \text{ in } D \qquad \text{and} \qquad u_{1, \varepsilon }^{bl} = -u_1 \left( x, \frac{x}{\varepsilon} \right) \text{ on } \partial D, $$ we get $$ u_\varepsilon(x) = u_0(x) + \varepsilon u_1 \left( x, \frac{x}{\varepsilon} \right) + \varepsilon u_{1, \varepsilon}^{bl} (x) + O( \varepsilon ) \text{ in } H^1(D). $$ While this expansion shows that correcting the boundary data in the two-scale expansion of $u_\varepsilon$ gives a better approximation, it is of little use as long as we do not understand the behavior of $u_{1, \varepsilon}^{bl}$ as $\varepsilon \to 0$. The last question is precisely a partial case of $(1)$-$(2)$, with boundary data $g(x,y) = - \chi^{\alpha} (y) \partial_{\alpha} u_0(x) $.

  1. BookIs an originAsymptotic analysis for periodic structures

    year of publication: 1978

  2. Article Homogenization and boundary layers

    Acta Mathematica 209 (1), 133-178, 2012

  3. Article Recent progress in the theory of homogenization with oscillating Dirichlet data

    pp. 1-13, year of publication: 2013arXiv

  4. Article Asymptotic analysis of boundary layer correctors in periodic homogenization

    SIAM Journal on Mathematical Analysis 45 (1), 345-387, 2013

No remarks yet