Gradient estimate for a locally constrained flow in $\mathbb H^{n+1}$


Posted online: 2022-10-12 18:55:53Z by Pengfei Guan2

Cite as: P-221012.2

  • Analysis of PDEs
  • Differential Geometry
View pdf

Problem's Description

The following hypersurface flow in $\mathbb H^{n+1}$ was introduced by Brendle-Guan-Li: \begin{align} X_t=\Big(\cosh(\rho) \frac{\sigma_{k}}{\sigma_{k+1}}(\kappa)-\frac{u}{c_{n,k}}\Big)\nu, \label{flow} \end{align} where $\nu$ the outer normal, $\kappa$ the principal curvature vector. The flow preserves $k$-th quermassintegral $\mathcal{A}_{k}$ and decreases $k+1)$-th quermassintegral $\mathcal{A}_{k+1}$. All regularity estimates and convergence would follow if one can establish the gradient estimate (or preservation of starshapedness) for solution of the flow. In turn, Alexandrov-Fenchel inequality for quermassintegrals in hyperbolic space can be established for general starshaped $k+1$-domains.

When $k=0$, Alexandrov-Fenchel inequality is the Minkowski inequality. This inequality is proved by Brendle-Guan-Li for general mean convex starshaped domains in $\mathbb H^{n+1}$. Alexandrov-Fenchel inequality is known for horo-convex domains (Wang-Xia).


\noindent {\bf Open problem}: prove the gradient estimate for flow (\ref{flow}) $\forall k< n-1$.


The case $k=n-1$ is known, as the flow preserved convexity.

  1. Article Isoperimetric type problem and hypersurface flows

    Journal of Mathematical Study 56 (1), 56-80, 2021

No solutions added yet

No remarks yet

  • Edited: (general update ) at 2022-10-12 19:08:36Z

  • Created at: 2022-10-12 18:55:53Z View this version