OpenYear of origin: 2018
Posted online: 2018-12-01 20:38:05Z by Victor Lvovich Porton19
Cite as: P-181201.4
Conjecture Let $R$ be the complete funcoid corresponding to the usual topology on extended real line $[-\infty,+\infty] = \mathbb{R}\cup\{-\infty,+\infty\}$. Let $\geq$ be the order on this set. Then $R\sqcap^{\mathsf{FCD}}\mathord{\geq}$ is a complete funcoid.
Proposition It is easy to prove that $\langle R\sqcap^{\mathsf{FCD}}\mathord{\geq}\rangle \{x\}$ is the infinitely small right neighborhood filter of point $x\in[-\infty,+\infty]$.
If proved true, the conjecture then can be generalized to a wider class of posets.
No solutions added yet
Created at: 2018-12-01 20:38:05Z
No remarks yet