OpenYear of origin: 2018
Posted online: 2018-12-01 20:56:15Z by Victor Lvovich Porton22
Cite as: P-181201.10
Conjecture For composable reloids $ f $ and $ g $ it holds
- $ \operatorname{Compl} ( g \circ f) = ( \operatorname{Compl} g) \circ f $ if $ f $ is a co-complete reloid;
- $ \operatorname{CoCompl} ( f \circ g) = f \circ \operatorname{CoCompl} g $ if $ f $ is a complete reloid;
- $ \operatorname{CoCompl} ( ( \operatorname{Compl} g) \circ f) = \operatorname{Compl} ( g \circ ( \operatorname{CoCompl} f)) = ( \operatorname{Compl} g) \circ ( \operatorname{CoCompl} f) $;
- $ \operatorname{Compl} ( g \circ ( \operatorname{Compl} f)) = \operatorname{Compl} ( g \circ f) $;
- $ \operatorname{CoCompl} ( ( \operatorname{CoCompl} g) \circ f) = \operatorname{CoCompl} ( g \circ f) $.
No solutions added yet
Created at: 2018-12-01 20:56:15Z
No remarks yet