Partially Solved
Posted online: 2018-07-31 10:13:04Z by Harish Shrivastava198
Cite as: P-180731.1
Given an open bounded set $D\subset \mathbb R^N$, let $f\in W^{-1,q}(D)$ and let $u$ be a Sobolev function $u\in W_0^{1,p}(D)$ such that $u$ solve the PDE $$ \begin{cases} -\Delta_p u=f\;\text{in $D$}\\ u\in W_0^{1,p}(D) \end{cases} $$
Given $\Omega\subset D$ (can be assumed open, or quasi open) If we define $P_{\Omega}:W_0^{1,p}(D)\to W_0^{1,p}(\Omega)$, $P_{\Omega}=Proj_{W_0^{1,p}(\Omega)}$ (projection of the function to the subspace $W_0^{1,p}(\Omega)$)
I wish to prove that the function $u_{\Omega}=P_{\Omega}u$ solve the PDE
$$ \begin{cases} -\Delta_p u_{\Omega}=f\;\text{in $\Omega$}\\ u_{\Omega}\in W_0^{1,p}(\Omega) \end{cases} $$
It will also sufficient to me if I could find a proof just for $f\equiv 1$.
New solution is added on 2018-09-27 20:30:34Z View the solution
Created at: 2018-07-31 10:13:04Z
How do you define this "projection" onto a subspace of $ W^{1,p}(D) $ if $ p \neq 2 $?