On global homogeneous solutions to the Signorini problem

Posted online: 2018-06-30 13:20:13Z by Alessio Figalli590

Cite as: G-180630.1

  • Analysis of PDEs
View pdf

Problem's Description

Let $(x,y)\in \mathbb R^n\times \mathbb R$, and let $u(x,y)=u(x,-y)$ solve $$ \left\{ \begin{array}{ll} \Delta u=0 &\text{for $y>0$}\\ \partial_{y}u\leq 0&\text{on $y=0$}\\ u\geq 0&\text{on $y=0$}\\ u\partial_{y}u= 0&\text{on $y=0$}, \end{array} \right. $$ where $\partial_yu(x,0):=\lim_{\epsilon\to 0^+}\frac{u(x,\epsilon)-u(x,0)}{\epsilon}$. We recall that, by the regularity theory in http://www.mathnet.ru/links/83200b51be5ed58c12caff3fc76afe89/znsl805.pdf, the function $u$ is locally Lipschitz in $\mathbb R^n\times \mathbb R$, and it is of class $C^{1,1/2}$ in the set $\mathbb R^n\times [0,\infty)$ (hence, also in the set $\mathbb R^n\times (-\infty,0]$ by symmetry).

Assume that $u$ is $\lambda$-homogeneous for some $\lambda>0$, namely $$ u(r x,r y)=r^\lambda u(x,y)\qquad \forall\,r>0. $$ Let $\mathcal O_n$ denote the set of possible homogeneities in dimension $n$.

It is well-known that, for $n=1$, the set of possible values of $\lambda$ is given by $$ \mathcal O_1:=\bigl\{1,2,3,4,\ldots\bigr\}\cup\biggl\{\frac{3}{2},\frac72,\frac{11}2,\ldots\biggr\} $$ (see for instance Appendix A.1 in https://arxiv.org/pdf/1703.00678.pdf, specified to the particular case $s=1/2$).

For instance, possible solutions are given by $$ u(x,y)=-|y| \quad \leftrightsquigarrow \quad \lambda=1, $$ $$ u(x,y)=x^2-y^2 \quad \leftrightsquigarrow \quad \lambda=2, $$ $$ u(x,y)=\frac{|y|^3}{3} -x^2|y|\quad \leftrightsquigarrow \quad \lambda=3. $$ Also, if we use polar coordinates $(\rho,\theta)$ with $\theta=0$ corresponding to the positive $x$ axis, then $$ u(\rho,\theta)=-\rho^{(2k+1)/2}\sin\biggl(\frac{(2k+1)\theta}{2}\biggr) \quad \leftrightsquigarrow \quad \lambda=\frac{2k+1}2,\qquad k\in \mathbb N. $$

In the case $n\geq 2$, much less is known. By the results in https://arxiv.org/pdf/math/0609031.pdf and https://arxiv.org/pdf/1709.03120.pdf, we know that the set $\mathcal O_n$ is disjoint from $$ \bigl(0,1\bigr)\cup \biggl(1,\frac32\biggr) \cup \biggl(\frac32,2\biggr) \cup\bigcup_{m\in \mathbb N}\bigl((2m-c_{m,n}^-,2m)\cup(2m,2m+c_{m,n}^+)\bigr), $$ where $c_{m,n}^\pm>0$.

  1. Article On the fine structure of the free boundary for the classical obstacle problem

    arXiv


  1. Open Discreteness of possible homogeneities

  2. Open On "small" homogeneities

No solutions added yet

No remarks yet

  • Created at: 2018-06-30 13:20:13Z