REGULARITY OF HOMOGENIZED BOUNDARY DATA IN
PERIODIC HOMOGENIZATION OF ELLIPTIC SYSTEMS

ZHONGWEI SHEN AND JINPING ZHUGE

DESCRIPTION OF THE SOLUTION

In [1], the authors considered the periodic homogenization of second-order elliptic systems
in divergence form with oscillating Dirichlet data or Neumann data of first order. They proved
that the homogenized boundary data belongs to $W^{1,p}$ for any $1 < p < \infty$. In particular,
this implies that the boundary layer tails are Hölder continuous of order α for any $\alpha \in (0, 1)$.

Precisely, we define the oscillating elliptic operator
\[
\mathcal{L}_\varepsilon = -\text{div}(A(x/\varepsilon)\nabla) = -\frac{\partial}{\partial x_i}\left\{a^{\alpha\beta}_{ij}(x/\varepsilon) \frac{\partial}{\partial x_j}\right\},
\]
We consider the Dirichlet problem
\[
\mathcal{L}_\varepsilon(u_\varepsilon) = 0 \quad \text{in } \Omega, \quad \text{and} \quad u_\varepsilon(x) = f(x, x/\varepsilon) \quad \text{on } \partialOmega,
\]
where $f(x, y)$ is 1-periodic in y, and Neumann problem
\[
\mathcal{L}_\varepsilon(v_\varepsilon) = 0 \quad \text{in } \Omega, \quad \text{and} \quad \frac{\partial v_\varepsilon}{\partial \nu_\varepsilon} = T_{ij} \cdot \nabla\{g_{ij}(x, x/\varepsilon)\} \quad \text{on } \partialOmega,
\]
where $T_{ij} = n_i e_j - n_j e_i$ is a tangential vector field on \partialOmega and $\{g_{ij}(x, y)\}$ are 1-periodic
in y.

Under the assumptions that A is smooth and 1-periodic, and Ω is a smooth and strictly
convex domain in \mathbb{R}^d, it was proved in [2] that the homogenized problem for (1) is given by
\[
\mathcal{L}_0(u_0) = 0 \quad \text{in } \Omega, \quad \text{and} \quad u_0 = \overline{f} \quad \text{on } \partialOmega,
\]
where \mathcal{L}_0 is the usual homogenized operator and \overline{f} is a function whose value at
$x \in \partialOmega$ depends only on A, $f(x, \cdot)$ and the outward normal n to \partialOmega at x. Similarly,
it was proved in [3] that if Ω is smooth and strictly convex, the homogenized problem
for (2) is given by
\[
\mathcal{L}_0(v_0) = 0 \quad \text{in } \Omega, \quad \text{and} \quad \frac{\partial v_0}{\partial \nu_0} = T_{ij} \cdot \nabla\overline{g}_{ij} \quad \text{on } \partialOmega,
\]
where $\frac{\partial v_0}{\partial \nu_0}$ denotes the conormal derivative of v_0 associated with \mathcal{L}_0, and $\{\overline{g}_{ij}\}$ are
functions on \partialOmega whose values at $x \in \partialOmega$ depend only on A, $\{g_{ij}(x, \cdot)\}$ and $n(x)$.

Then, it was proved in [1] that

Theorem 1 [Dirichlet Data] Assume that A is elliptic, smooth and 1-periodic. Let Ω be a smooth and strictly convex domain in \mathbb{R}^d. Let \overline{f} denote the homogenized data in (3). Then
\[
\|\overline{f}\|_{W^{1,p}(\partialOmega)} \leq C_p \left(\int_{\mathbb{T}^d} \|f(\cdot, y)\|_{C^k(\partialT^d)}^p dy\right)^{1/2} \quad \text{for any } 1 < p < \infty,
\]
where C_p depends only on d, m, λ, p, and $\|A\|_{C^k(\mathbb{T}^d)}$ for some $k = k(d, p) > 1$.

Type: Partial Solution

This PDF file is programmatically generated on 2018-09-29 05:06:53 (UTC) based on the post by Jinping Zhuge created on SciLag on 2018-09-29 05:04:52 (UTC).

Version: 2

1
Theorem 2 [Neumann Data] Assume that A is elliptic, smooth and 1-periodic. Let Ω be a smooth and strictly convex domain in \mathbb{R}^d. Let $\mathcal{g} = (g_{ij})$ denote the homogenized data in (4). Then

$$\|\mathcal{g}\|_{W^{1,p}(\partial\Omega)} \leq C_p \left(\int_{\mathbb{T}^d} \|g(\cdot, y)\|^2_{C^1(\partial\Omega)} \, dy \right)^{1/2}$$

for any $1 < p < \infty$, where C_p depends only on d, m, λ, p, and $\|A\|_{C^k(\mathbb{T}^d)}$ for some $k = k(d,p) > 1$.

The proofs for Dirichlet and Neumann are similar. The ingredients come from three parts: 1. Maximal principle for solutions in half-spaces; 2. Weighted estimates in half-spaces; 3. An interpolation argument that combines all these estimates. We also point that the results in Theorem 1 and 2 may be extended to domains of finite type considered in [4].

References

https://arxiv.org/abs/1707.03160

https://arxiv.org/abs/1610.05273

https://arxiv.org/abs/1612.05383
The Original Problem

Regularity of homogenized boundary condition for divergence type elliptic systems

DAVID GÉRARD-VARET, AND NADER MASMOUDI

Subject: Analysis of PDEs
Status: Partially Solved
Posted by: Hayk Aleksanyan on 2018-07-29 13:37:28 (UTC)
Version: 2 ID: P-180729.1

Consider the homogenization problem of the elliptic system

$$-\nabla \cdot A\left(\frac{x}{\varepsilon}\right) \nabla u(x) = 0, \quad x \in D, \quad (1)$$

in a domain $D \subset \mathbb{R}^d$, $(d \geq 2)$, and with oscillating Dirichlet boundary data

$$u(x) = g\left(x, \frac{x}{\varepsilon}\right), \quad x \in \partial D. \quad (2)$$

Here $\varepsilon > 0$ is a small parameter, and $A = A^{\alpha\beta}(x) \in M_N(\mathbb{R})$, $x \in \mathbb{R}^d$ is a family of functions indexed by $1 \leq \alpha, \beta \leq d$ and with values in the set of matrices $M_N(\mathbb{R})$. For each $\varepsilon > 0$ let L_ε be the differential operator in question, i.e. the i-th component of its action on a vector function $u = (u_1, ..., u_N)$ is defined as

$$(L_\varepsilon u)_i(x) = -\left(\nabla \cdot A\left(\frac{x}{\varepsilon}\right) \nabla u\right)_i(x) = -\partial_{x^\alpha} \left[A^{\alpha\beta}_{ij} \left(\frac{x}{\varepsilon}\right) \partial_{x^\beta} u_j\right],$$

where $1 \leq i \leq N$.

Consider (1) under the following conditions:

(Ellipticity) there exists a constant $\lambda > 0$ such that $\forall x \in \mathbb{R}^d$, $\forall \xi = (\xi_i^\alpha) \in \mathbb{R}^{dN}$ one has

$$\lambda |\xi_i^\alpha|^2 \leq A^{\alpha\beta}_{ij}(x) \xi_i^\alpha \xi_j^\beta \leq \frac{1}{\lambda} |\xi_i^\alpha|^2.$$

(Periodicity) A and, g in its second variable, are both \mathbb{Z}^d-periodic, i.e. $A(y + h) = A(y)$, and $g(x, y + h) = g(y)$ for all $x \in \partial D$, $y \in \mathbb{R}^d$, and $h \in \mathbb{Z}^d$.

(Smoothness) The elements of A, the function g in both variables, and the boundary of D are C^∞ smooth.

(Geometry) Domain D is strictly convex.

For each $\varepsilon > 0$ let u_ε be the unique (smooth) solution to (1). The main result of [1] states that under the conditions listed above, there exists an L^∞ function $g_* : \partial D \to \mathbb{R}^N$, such that if u_0 is the solution to the Dirichlet problem with operator tensor A^0 (the classical homogenized coefficients), and boundary data g_*, then for any $0 < \alpha < \frac{d-1}{3d+5}$ one has

$$||u_\varepsilon - u_0||_{L^2(D)} \leq C_\alpha \varepsilon^\alpha,$$

where the constant $C_\alpha = C(\alpha, D, A, g, d)$. This breakthrough result in the analysis of homogenization of (1)-(2) gives rise to the following natural question:

What is the regularity of the homogenized boundary condition g_*?
The function g_* in [1] is defined at all $x \in \partial D$ with Diophantine normal vector, where a unit vector $n \in \mathbb{R}^d$ is called Diophantine if there exist constants $\kappa, l > 0$ such that $||P_{n^\perp}(\xi)|| \geq \kappa ||\xi||^{-l}$ for all non-zero $\xi \in \mathbb{Z}^d$, where P_{n^\perp} is the projection operator on the direction orthogonal to n. It is not hard to see that for any fixed $l > 0$ satisfying $l(d - 1) > 1$ almost all points (with respect to the \mathcal{H}^{d-1}-measure on the sphere) are Diophantine with some constant $\kappa > 0$ (the constant $\kappa > 0$, however, is not bounded away from 0). Thus, g_* is defined almost everywhere on the boundary of D.

To outline how Diophantine condition comes into play, we next bring up the notion of boundary layer systems introduced in [2].

For a unit vector n, consider the following system

\[
\begin{align*}
-\nabla_y \cdot A(y)\nabla_y v(y) &= 0, & y \cdot n > 0, \\
v(y) &= v_0(y), & y \cdot n = 0
\end{align*}
\]

where v_0 is smooth and \mathbb{Z}^d-periodic (and when applied to (1)-(2) is defined via g - the original boundary data). Systems of the form (3) were introduced and studied in [2], and later in [1], and play a central role in the analysis of (1)-(2). It was proved in [1] (see also [2]) that under the Diophantine condition on the normal n, the solution to (3) converges as $y \cdot n \to \infty$ to a constant vector field named as a boundary layer tail. The homogenized boundary condition g_* is defined via the function $x \mapsto v_\infty(n(x))$ where $x \in \partial D$ and has a Diophantine normal vector, and v_∞ is the boundary layer tail corresponding to n. Hence the regularity of g_* is boiled down to understanding the regularity of boundary layer tails with respect to the normal vector field of ∂D.

It is proved in [1] that boundary layer tails are Lipschitz continuous, however, the Lipschitz constant blows up (as the Diophantine properties of the normal vectors deteriorate). From the (non-uniform) Lipschitz estimate it follows that g_* is continuous at all points of ∂D with Diophantine normal vector. But since the Lipschitz bounds on boundary layer tails are not uniform along ∂D, it is not clear, for example, if g_* admits continuous extension to all points of ∂D (recall that g_* was defined only at points with Diophantine normals).

Understanding the regularity of g_* presents a challenging mathematical question on its own right, and may lead to a better understanding of homogenization of (1)-(2).

References
